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SPORTING CONTESTS WITH GAMES ON THE FIELD 

Concursos deportivos con juegos en el campo 
 

Masaki Fujimoto 
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ABSTRACT: This article studies professional sports leagues where each team 
consists of offensive and defensive units and plays games on the field during the 
league’s regular season. It is shown that (i) if each team independently determines the 
offensive and defensive talent levels demanded so as to maximize the expected win 
percentage (Pythagorean expectation) subject to the budget constraint, then the teams 
in the leagues are divided into rich offensive-minded winners and poor 
defensive-minded losers, and that (ii) if the payroll of each team is the same, then the 
unique equilibrium talent allocation is Pareto efficient. Otherwise, it is Pareto 
inefficient.  

KEY WORDS: sports league; games on the field; win maximization; Pythagorean 
expectation; team payroll; Pareto efficiency. 

 
RESUMEN: Este artículo estudia las ligas deportivas profesionales donde cada equipo 
consta de unidades ofensivas y defensivas y juega partidos en el campo durante la 
temporada regular de la liga. Se muestra que (i) si cada equipo determina 
independientemente los niveles de talento ofensivo y defensivo exigidos para maximizar 
el porcentaje de victorias esperadas (expectativa Pitagórica) sujeto a la restricción 
presupuestaria, entonces los equipos de las ligas se dividen en ricos con mentalidad 
ofensiva ganadores y malos perdedores de mentalidad defensiva, y que (ii) si la nómina 
de cada equipo es la misma, entonces la asignación de talento de equilibrio único es 
Pareto eficiente. De lo contrario, es Pareto ineficiente. 
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1. Introduction 
It is no exaggeration to say that among various things concerned with 
professional sports leagues, games played on the field attract fan interest most. 
Fans pay to watch games at the stadium, watch them on TV, read articles on 
them in newspapers and magazines, and talk passionately about them. In 
addition, some fans enjoy analyzing game statistics (on-field performance) of 
their favorite players and/or teams. 

Nevertheless, in the economic analysis of professional sports leagues, games on 
the field have not been considered explicitly. For example, professional sports 
leagues have been studied by many economists: leagues with profit-maximizing 
teams (e.g., El-Hodiri & Quirk, 1971; Fort & Quirk, 1995; Vrooman, 1995; 
Szymanski, 2003; Szymanski & Késenne, 2004; Késenne, 2007; Madden, 2011); 
leagues with win-maximizing teams (e.g., Késenne, 2000a, 2006, and 2007; 
Vrooman, 2007); and leagues with utility-maximizing teams (e.g., Quirk & 
El-Hodiri, 1974; Rascher, 1997; Dietl, Grossman, & Lang, 2011). In these studies, 
phenomena that determine the results of games have been treated as events 
occurring inside a “black box”, and the win percentage of a team has been 
determined by an exogenously given contest success function (CSF). 

The purpose of this article is to incorporate games on the field into the economic 
analysis of sporting contests. For the purpose, we study professional sports 
leagues where (i) each team consists of offensive and defensive units, and plays 
a sequence of Attack & Defense games against each of the other teams during 
the league’s regular season; (ii) the expected season win percentage of each 
team is calculated based on the expected points scored (EPS) and the expected 
points allowed (EPA) in the regular-season games by use of the Pythagorean 
expectation; and (iii) the offensive and defensive talent levels of each team, 
which are measured in terms of a point in a game, are determined so as to 
maximize the expected season win percentage subject to the budget constraint, 
given the talent levels of the opponents. 

In these settings, it is shown that if the payroll of each team is different, then the 
teams in the league are divided into rich offensive-minded winners and poor 
defensive-minded losers, and the unique equilibrium talent allocation is Pareto 
inefficient in that there remain the possibilities of Pareto-improving player 
trades in the player market. In contrast, if the payroll of each team is the same, 
then all teams choose the same talent levels and the unique equilibrium talent 
allocation is Pareto efficient. 

Here we mention the two analytical tools used in this article. First, the Attack & 
Defense game is a member of the matching penny family (i.e., zero-sum games 
with a unique mixed strategy Nash equilibrium) which is widely used to study 
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strategic interactions in sports (e.g., Chiappori, Levitt, & Groseclose, 2002; 
Palacios-Huerta, 2003; Coloma, 2007; McGarrity & Linnen, 2010; Azar & 
Bar-Eli, 2011).1 Our novelty is that the payoffs to players in the payoff matrix 
are not constants but variables that depend on other strategic variables 
previously chosen by the players. Second, the Pythagorean expectation is the 
formula that provides the win percentage a sports team should be expected to 
have at a particular time during a season. It was initially devised by the baseball 
statistician Bill James during the early 1980s, and has since been updated for 
use in other sports: American football (Schatz, 2003), basketball (Oliver, 2004; 
Chen & Tengfei, 2016), hockey (Cochran & Blackstock, 2009; Dayaratna & 
Miller, 2013), and soccer (Hamilton, 2011). 

The remainder of this article is organized as follows. Section 2 introduces the 
Attack & Defense game and the Pythagorean expectation into a two-team league. 
Section 3 identifies an equilibrium allocation of the offensive and defensive 
talent between the two teams. Section 4 examines geometrically the results 
obtained in the preceding section by use of the box diagram, which is analogous 
to the Edgeworth box. Section 5 discusses a general n-team league and presents 
the main results of this article. Section 6 summarizes the key findings and 
concludes. 

2.  The Model 

the Attack & Defense Game: Games on the Field 

We consider a two-team league where each team consists of an offensive unit 
and a defensive unit.2 The offensive talent level and the defensive talent level of 
team 𝑖 are denoted by 𝑥! > 0 and 𝑦! > 0, respectively. A unit measuring 𝑥! 
(𝑦!) is determined in such a way that a one-unit increase in 𝑥! (𝑦!) increases 
(decreases) points scored (allowed) by one in a game played on the field.3 As a 
result, we can express the expected points scored (EPS) and the expected points 
allowed (EPA) in regular-season games as functions of the talent levels. The 
determination of the talent levels will be discussed in the next section. 

During the league’s regular season, each team plays a sequence of Attack & 
Defense games against each other. In this game, the objective of the offense 

 
1 In addition, Dobson and Goddard (2010) studied the game where each team chooses between defensive and 
attacking formations and between non-violent and violent playing styles, which is a member of the family of 
non-zero-sum games with a unique dominant strategy equilibrium. In their model, the game is played finitely many 
times and the dominant strategy in a subgame at one stage of a match varies according to the situation (exogenously 
given parameter values), e.g. relative team quality, match duration, and difference in scores. Since their game always 
has a unique dominant strategy, they study “strategic behavior”, but not “strategic interaction” (, which we study). 
2 Members of the offensive and defensive units can be different (e.g., American football) or the same (e.g., baseball, 
basketball, hockey, rugby, soccer, and volleyball). 
3 In this context, sabermetricians use various statistics to quantify a baseball player’s entire offensive (defensive) 
performance by attempting to measure how many runs a player contributed (saved), e.g., Runs Created and Weighted 
Runs Above Average (offense), and Defensive Runs Saved and Ultimate Zone Rating (defense). See, for example, 
Glossary of the MLB website. 
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(Attack) is to score as many points as possible, while the objective of the defense 
(Defense) is to prevent the opposing offense from scoring. To do so, the offense 
tries to choose the type of play against which the defense does not defend, while 
the defense tries to defend against the type of play which the offense chooses. 
For simplicity, the offense and the defense have two alternative types of play, 
respectively (e.g., a type of play: run or pass, or a point of attack: short or deep, 
inside or outside, right or left, high or low, or timing: quick or delayed, etc.), and 
independently and simultaneously choose one of them. 

The outcomes of the Attack & Defense game 𝐺!" (𝑖 ≠ 𝑗) where team 𝑖 is the 
offense (row player) and team 𝑗 is the defense (column player) are shown in the 
payoff matrix depicted in Figure 1 (for the outcomes of the game 𝐺"! where 
team 𝑖 is the defense (column player) and team 𝑗 is the offense (row player), 
change the subscripts 𝑖 and 𝑗 in each entry of the bi-matrix).4 We define a 
sequence of the games 𝐺{!,"} ≡ *𝐺!" , ⋯ , 𝐺!" , 𝐺"! , ⋯ , 𝐺"! , 𝐺!" , ⋯ , 𝐺!" , ⋯	.  as a 
regular-season game played by teams 𝑖 and 𝑗. 

Figure 1. The Attack & Defense game 𝐺!" (𝑖 ≠ 𝑗) 

The entries in boxes (𝐴&, 𝐷') and (𝐴', 𝐷&) indicate that if the offense and the 
defense choose the different types of play, then the defense is unproductive, and 
thus the offense scores 𝑥! points and the defense allows |−𝑥!| points. On the 
other hand, the entries in boxes (𝐴&, 𝐷&)  and (𝐴', 𝐷')  indicate that if the 
offense and the defense choose the same types of play, then the defense is 
productive, and thus the offense scores 𝑥! − 𝑦" points and the defense allows 
5𝑦" − 𝑥!5 points. 

In the remainder of this subsection, we derive the EPS and the EPA of a team in 
the regular-season game 𝐺{!,"} . To do so, we decompose 𝐺{!,"}  into two 
sequences of games *𝐺!". and *𝐺"!., and calculate a Nash equilibrium of 𝐺!" 
(we can also calculate a Nash equilibrium of 𝐺"! in the same way). Since 𝑥! >

 
4 In ball games, e.g. American football, basketball, hockey, rugby, soccer, and volleyball, we can consider the team 
that is in possession of the ball to be the offense and the team that is not to be the defense. 
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𝑥! − 𝑦" for any 𝑥! > 0 and 𝑦" > 0, this zero-sum game has no pure strategy 
Nash equilibrium. We thus introduce a mixed strategy in which the offense 
chooses 𝐴&  with probability 𝑝  and 𝐴'  with probability 1 − 𝑝  (0 < 𝑝 < 1), 
and a mixed strategy in which the defense chooses 𝐷& with probability 𝑞 and 
𝐷'  with probability 1 − 𝑞  ( 0 < 𝑞 < 1 ). 5  By the payoff-equating method, 
solving the following equations:6 

𝑝:𝑥! − 𝑦"; + (1 − 𝑝)𝑥! = 𝑝𝑥! + (1 − 𝑝):𝑥! − 𝑦";, 

𝑞:𝑥! − 𝑦"; + (1 − 𝑞)𝑥! = 𝑞𝑥! + (1 − 𝑞):𝑥! − 𝑦";, 

we obtain the unique mixed strategy Nash equilibrium of the game (𝑝, 𝑞) =
>&
'
, &
'
?. 

 

The EPS and the EPA of team 𝑖 in the regular-season game 𝐺{!,"} against team 
𝑗 are then given by 

𝐸𝑃𝑆!
" = &

(
:𝑥! − 𝑦" + 𝑥! + 𝑥! + 𝑥! − 𝑦"; =

&
'
:2𝑥! − 𝑦";,                   (1) 

𝐸𝑃𝐴!
" = &

(
:𝑥" − 𝑦! + 𝑥" + 𝑥" + 𝑥" − 𝑦!; =

&
'
:2𝑥" − 𝑦!;,                   (2) 

where 𝐸𝑃𝐴!
" = 𝐸𝑃𝑆"! (since points allowed by team 𝑖 are points scored by team 

𝑗, and vice versa). Equations (1) and (2) imply that a one-unit increase in 𝑥! 
increases the EPS by one and a two-unit increase in 𝑦! decreases the EPA by 
one. 

Two remarks are in order. 

Remark 1. Since the Attack & Defense game is a two-person zero-sum game 
with a unique mixed strategy Nash equilibrium, the use of Equations (1) and (2) 
(the values of 𝐺!" and 𝐺"!) as the EPS and the EPA of the regular-season game 
𝐺{!,"} ≡ 〈*𝐺!"., *𝐺"!.〉 can be justified by the following result: Robinson (1951) 
proved that if the players of a finite two-person zero-sum game interact 
repeatedly via fictitious play, then the weighted averages of per-period payoffs 
converge to the value of the game.7 If the Attack & Defense game 𝐺!" is played 

 
5 The concept of mixed strategy has been used by many researchers to study strategic interactions in sports: e.g., 
American football (Kovash & Levitt, 2009; McGarrity & Linnen, 2010), baseball (Kovash & Levitt, 2009; 
Weinstein-Gould, 2009; Gmeiner, 2019), and soccer (Chiappori, Levitt, & Groseclose, 2002; Palacios-Huerta, 2003; 
Coloma, 2007; Azar & Bar-Eli, 2011). 
6 A mixed strategy Nash equilibrium has the property that if a player is playing his equilibrium mixed strategy, the 
expected payoffs to another player from playing her pure strategies must be identical. See, for example, Varian (1992, 
Section 15.5). 
7 The fictitious play was originally proposed by Brown (1951) as an algorithm for finding the approximate value of a 
two-person zero-sum game, and was later interpreted as a learning process for boundedly rational players in which 
each player plays a myopic pure best response in each period, on the assumption that the opponents will play each 
pure strategy with probability equal to its historical frequency. The method of forming an assessment over the 
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repeatedly, then for any initial weights satisfying 𝜅)! (𝐷&) ≠ 𝜅)! (𝐷')  and 
𝜅)
"(𝐴&) ≠ 𝜅)

"(𝐴') the fictitious play process generates a deterministic cycle of 
play ⋯ → (𝐴&, 𝐷&) → ⋯ → (𝐴', 𝐷&) → ⋯ → (𝐴', 𝐷') → ⋯ → (𝐴&, 𝐷') → ⋯ →
(𝐴&, 𝐷&) → ⋯.                                 

Remark 2. In general cases where the offense and the defense have the finite 
number 𝑚 ≥ 3 of alternative types of play, the EPS and the EPA of team 𝑖 in 
the regular-season game against team 𝑗 are given by 

𝐸𝑃𝑆!
" = &

*
:𝑚𝑥! − 𝑦"; and 𝐸𝑃𝐴!

" = &
*
:𝑚𝑥" − 𝑦!;. 

This generalization does not change the results of the model in any essential 
ways. 

The following example shows that in general cases the fictitious play process 
generates more complicated cycles of play. 

Example. 

We consider the 3×3 Attack and Defense game 𝐺!" where the payoffs when 
team 𝑖  chooses 𝐴+  ( 𝑎 = 1,2,3 ) and team 𝑗  chooses 𝐷,  ( 𝑑 = 1,2,3 ) are 
:𝑥! − 𝑦" , 𝑦" − 𝑥!; if 𝑎 = 𝑑 and (𝑥! , −𝑥!) if 𝑎 ≠ 𝑑, respectively. If 𝐺!" is played 
repeatedly, then for given initial weights satisfying 𝜅)! (𝐷&) ≠ 𝜅)! (𝐷') ≠ 𝜅)! (𝐷-) 
and 𝜅)

"(𝐴&) ≠ 𝜅)
"(𝐴') ≠ 𝜅)

"(𝐴-) the fictitious play process generates either of the 
following cycles of play (when the teams have initial weights “*” the cycle of play 
starts at “(𝐴+ , 𝐷,)∗”, and so on): 

Case (i) * 𝜅)! (𝐷&) < 𝜅)! (𝐷') < 𝜅)! (𝐷-) and 𝜅)
"(𝐴') < 𝜅)

"(𝐴-) < 𝜅)
"(𝐴&), 

      ** 𝜅)! (𝐷') < 𝜅)! (𝐷-) < 𝜅)! (𝐷&) and 𝜅)
"(𝐴-) < 𝜅)

"(𝐴&) < 𝜅)
"(𝐴'), 

     *** 𝜅)! (𝐷-) < 𝜅)! (𝐷&) < 𝜅)! (𝐷') and 𝜅)
"(𝐴&) < 𝜅)

"(𝐴') < 𝜅)
"(𝐴-). 

Figure-0 cycle: 

⋯ → (𝐴&, 𝐷&)∗ → ⋯ → (𝐴', 𝐷&) → ⋯ → (𝐴', 𝐷')∗∗ → ⋯ → (𝐴-, 𝐷') → ⋯ →
(𝐴-, 𝐷-)∗∗∗ → ⋯ → (𝐴&, 𝐷-) → ⋯ → (𝐴&, 𝐷&)∗ → ⋯; 

 

Case (ii) * 𝜅)! (𝐷&) < 𝜅)! (𝐷-) < 𝜅)! (𝐷') and 𝜅)
"(𝐴-) < 𝜅)

"(𝐴') < 𝜅)
"(𝐴&), 

      ** 𝜅)! (𝐷-) < 𝜅)! (𝐷') < 𝜅)! (𝐷&) and 𝜅)
"(𝐴') < 𝜅)

"(𝐴&) < 𝜅)
"(𝐴-), 

 
distribution of opponents’ actions corresponds to Bayesian inference when a player believes that his opponents’ play 
corresponds to a sequence of i.i.d. multinomial random variables with a fixed but unknown distribution, and a 
player’s prior beliefs over this unknown distribution have a Dirichlet distribution. The fictitious play is foundation for 
more complex models (see Fudenberg & Levine, 1998, Chapter 2). 
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     *** 𝜅)! (𝐷') < 𝜅)! (𝐷&) < 𝜅)! (𝐷-) and 𝜅)
"(𝐴&) < 𝜅)

"(𝐴-) < 𝜅)
"(𝐴'). 

Figure-0 cycle: 

⋯ → (𝐴&, 𝐷&)∗ → ⋯ → (𝐴-, 𝐷&) → ⋯ → (𝐴-, 𝐷-)∗∗ → ⋯ → (𝐴', 𝐷-) → ⋯ →
(𝐴', 𝐷')∗∗∗ → ⋯ → (𝐴&, 𝐷') → ⋯ → (𝐴&, 𝐷&)∗ → ⋯; 

 

Case (iii) * 𝜅)! (𝐷&) < 𝜅)! (𝐷') < 𝜅)! (𝐷-) and 𝜅)
"(𝐴-) < 𝜅)

"(𝐴') < 𝜅)
"(𝐴&), 

       ** 𝜅)! (𝐷&) < 𝜅)! (𝐷-) < 𝜅)! (𝐷') and 𝜅)
"(𝐴') < 𝜅)

"(𝐴-) < 𝜅)
"(𝐴&). 

Figure-8 cycle: 

⋯ → (𝐴&, 𝐷&)∗ → ⋯ → (𝐴', 𝐷&) → ⋯ → (𝐴', 𝐷') → ⋯ → (𝐴-, 𝐷') → ⋯⋯ →
(𝐴-, 𝐷-) → ⋯ → (𝐴&, 𝐷-) → ⋯ → (𝐴&, 𝐷&)∗∗ → ⋯ → (𝐴-, 𝐷&) → ⋯ → (𝐴-, 𝐷-) → ⋯ →
(𝐴', 𝐷-) → ⋯⋯ → (𝐴', 𝐷') → ⋯ → (𝐴&, 𝐷') → ⋯ → (𝐴&, 𝐷&)∗ → ⋯; 

 

Case (iv) * 𝜅)! (𝐷') < 𝜅)! (𝐷-) < 𝜅)! (𝐷&) and 𝜅)
"(𝐴&) < 𝜅)

"(𝐴-) < 𝜅)
"(𝐴'), 

       ** 𝜅)! (𝐷') < 𝜅)! (𝐷&) < 𝜅)! (𝐷-) and 𝜅)
"(𝐴-) < 𝜅)

"(𝐴&) < 𝜅)
"(𝐴'). 

Figure-8 cycle: 

⋯ → (𝐴', 𝐷')∗ → ⋯ → (𝐴-, 𝐷') → ⋯ → (𝐴-, 𝐷-) → ⋯ → (𝐴&, 𝐷-) → ⋯⋯ →
(𝐴&, 𝐷&) → ⋯ → (𝐴', 𝐷&) → ⋯ → (𝐴', 𝐷')∗∗ → ⋯ → (𝐴&, 𝐷') → ⋯ → (𝐴&, 𝐷&) → ⋯ →
(𝐴-, 𝐷&) → ⋯⋯ → (𝐴-, 𝐷-) → ⋯ → (𝐴', 𝐷-) → ⋯ → (𝐴', 𝐷')∗ → ⋯; 

 

Case (v) * 𝜅)! (𝐷-) < 𝜅)! (𝐷&) < 𝜅)! (𝐷') and 𝜅)
"(𝐴') < 𝜅)

"(𝐴&) < 𝜅)
"(𝐴-), 

      ** 𝜅)! (𝐷-) < 𝜅)! (𝐷') < 𝜅)! (𝐷&) and 𝜅)
"(𝐴&) < 𝜅)

"(𝐴') < 𝜅)
"(𝐴-). 

Figure-8 cycle: 

⋯ → (𝐴-, 𝐷-)∗ → ⋯ → (𝐴&, 𝐷-) → ⋯ → (𝐴&, 𝐷&) → ⋯ → (𝐴', 𝐷&) → ⋯⋯ →
(𝐴', 𝐷') → ⋯ → (𝐴-, 𝐷') → ⋯ → (𝐴-, 𝐷-)∗∗ → ⋯ → (𝐴', 𝐷-) → ⋯ → (𝐴', 𝐷') →
⋯ → (𝐴&, 𝐷') → ⋯⋯ → (𝐴&, 𝐷&) → ⋯ → (𝐴-, 𝐷&) → ⋯ → (𝐴-, 𝐷-)∗ →, 

where the length of period “⋯⋯” is longer than that of “⋯”. 

The fictitious play process cycles as follows. Case (i): If the initial weights are “*”, 
then team 𝑖 chooses 𝐴&  and team 𝑗 chooses 𝐷&  repeatedly, so the weights 
𝜅/!(𝐷&) and 𝜅/

"(𝐴&) increase. When team 𝑖’s weights are 𝜅/!(𝐷') < 𝜅/!(𝐷&) team 
𝑖 switches to 𝐴' and chooses it repeatedly, so the weight 𝜅/

"(𝐴') increases. If 
the weights satisfy “**”, then team 𝑖  chooses 𝐴'  and team 𝑗  chooses 𝐷' 
repeatedly, and so on. The other results can be verified in similar ways. 
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The Expected Win Percentage: the Pythagorean Expectation 

We specify the relationship between the season win percentage and the talent 
levels of a team. The expected season win percentage of team 𝑖 is calculated 
based on Equations (1) and (2) by use of the Pythagorean expectation: 

𝑤! =
0'1!23"4

#

0'1!23"4
#50'1"23!4

#,                                             (3) 

where 𝛾 > 0 is the Pythagorean exponent, 2𝑥! − 𝑦" ≥ 0, and 2𝑥" − 𝑦! ≥ 0. The 
values of Equation (3) for any 𝛾 > 0 are presented as follows (see Figure 2): 

(i) if 𝑥! = 𝑦" 2⁄  and 𝑦! < 2𝑥" (i.e., 𝐸𝑃𝑆!
" = 0 and 𝐸𝑃𝐴!

" > 0), then 𝑤! = 0, 

(ii) if 2:𝑥! − 𝑦" 2⁄ ; ⋚ 2𝑥" − 𝑦! (i.e., 𝐸𝑃𝑆!
" ⋚ 𝐸𝑃𝐴!

"), then 𝑤! ⋚
&
'
, 

(iii) if 𝑥! > 𝑦" 2⁄  and 𝑦! = 2𝑥" (i.e., 𝐸𝑃𝑆!
" > 0 and 𝐸𝑃𝐴!

" = 0), then 𝑤! = 1. 

Figure 2. The level sets of the win percentage of team 𝑖 

 

Thus, the level set of Equation (3) is a straight line segment through the point 
(𝑥! , 𝑦!) = :𝑦" 2⁄ , 2𝑥"; for given :𝑥" , 𝑦"; (𝑗 ≠ 𝑖). 

In the remainder of this subsection, we provide the relationship between 
Equation (3) and the contest success function (CSF) 𝑤! = 𝑥!6 :𝑥!6 + 𝑥"6;⁄  with 
0 < γ ≤ 1, which is the most widely used in the sports economics literature. The 
following properties of Equation (3) are analogous to those of the CSF 
mentioned above.8 First, Equation (3) is non-negative, 𝑤! ≥ 0 and 𝑤" ≥ 0. 

 
8 As shown by Skaperdas (1996, Theorem 2), the power form is the only functional form that satisfies positivity and 
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Second, since 𝐸𝑃𝐴!
" = 𝐸𝑃𝑆"! , Equation (3) satisfies the adding-up constraint 

𝑤! +𝑤" = 1 for any (𝑥! , 𝑦!) and :𝑥" , 𝑦";.9 Third, Equation (3) is homogeneous 
of degree 0: 

𝑤! =
0'1!23"4

#

0'1!23"4
#50'1"23!4

# =
0'71!273"4

#

0'71!273"4
#50'71"273!4

#  

for any 𝜆 > 0 and for any (𝑥! , 𝑦!) and :𝑥" , 𝑦";. Fourth, if we assume that 2𝑥! −
𝑦" > 0 and 2𝑥" − 𝑦! > 0, then Equation (3) is increasing in the talent levels of 
the team: 

89!
81!

= '60'1!23"4
#$%0'1"23!4

#

:0'1!23"4
#50'1"23!4

#;
& > 0, 

89!
83!

= 60'1!23"4
#0'1"23!4

#$%

:0'1!23"4
#50'1"23!4

#;
& > 0, 

and decreasing in the talent levels of the opponent: 

89!
81"

= − '60'1!23"4
#0'1"23!4

#$%

:0'1!23"4
#50'1"23!4

#;
& < 0, 

89!
83"

= − 60'1!23"4
#$%0'1"23!4

#

:0'1!23"4
#50'1"23!4

#;
& < 0. 

Lastly, Equation (3) has an anonymity property: 𝑤! = 𝑤" = 1 2⁄  if (𝑥! , 𝑦!) =
:𝑥" , 𝑦";. 

Since the Pythagorean exponent γ > 0 is usually greater than one, the shape of 
Equation (3) is more complicated than that of the CSF mentioned above.10 The 
second-order partial derivatives of Equation (3) are given by 

8&9!
81!&

= −
(60'1!23"4

#$&0'1"23!4
#
:(65&)0'1!23"4

#
2(62&)0'1"23!4

#
;

:0'1!23"4
#50'1"23!4

#;
' , 

8&9!
83!&

=
60'1!23"4

#0'1"23!4
#$&

:(65&)0'1"23!4
#
2(62&)0'1!23"4

#
;

:0'1!23"4
#50'1"23!4

#;
' , 

 
the adding-up constraint, homogeneity, monotonicity, anonymity, consistency, and independence from irrelevant 
alternatives. 
9 Let 𝑛 be the number of teams and 𝑛! be the number of wins of team 𝑖. Then we have 𝑤! = 𝑛! (𝑛 − 1)⁄ . Since 
the total number of wins is ∑𝑛! = 𝑛(𝑛 − 1) 2⁄ , we obtain ∑𝑤! = 𝑛 2⁄ . 
10 In James’s original Pythagorean formula for baseball, the exponent was γ = 2. The optimal value of γ for 
baseball was later calculated to be 1.82-1.86 (Miller, 2007; Tung, 2010). For American football, an appropriate value 
for γ is 2.37 (Schatz, 2003). For basketball, an appropriate value for γ is around 14 (Oliver, 2004; Chen & Tengfei, 
2016). For hockey, an appropriate value for γ is around 2 (Cochran & Blackstock, 2009; Dayaratna & Miller, 2013). 
For soccer, an appropriate value for γ is 1.60-1.85 (Hamilton, 2011). 
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8&9!
81!83!

=
'6&0'1!23"4

#$%0'1"23!4
#$%

:0'1"23!4
#
20'1!23"4

#
;

:0'1!23"4
#50'1"23!4

#;
' . 

Consequently, we obtain the following results: 

(i) if 𝑤! <
62&
'6

, then 8
&9!
81!&

> 0, 8
&9!
83!&

> 0, and 8&9!
81!83!

> 0, 

(ii) if 62&
'6

< 𝑤! <
&
'
, then 8

&9!
81!&

< 0, 8
&9!
83!&

> 0, and 8&9!
81!83!

> 0, 

(iii) if &
'
< 𝑤! <

65&
'6

, then 8
&9!
81!&

< 0, 8
&9!
83!&

> 0, and 8&9!
81!83!

< 0, 

(iv) if 65&
'6

< 𝑤!, then 8
&9!
81!&

< 0, 8
&9!
83!&

< 0, and 8&9!
81!83!

< 0, 

where (𝛾 − 1) 2𝛾⁄ > 0 and (𝛾 + 1) 2𝛾⁄ < 1 if γ > 1, while (𝛾 − 1) 2𝛾⁄ ≤ 0 and 
(𝛾 + 1) 2𝛾⁄ ≥ 1 if 0 < γ ≤ 1. For example, if γ = 2, then we have (i) 0 < 𝑤! <
1 4⁄ , (ii) 1 4⁄ < 𝑤! < 1 2⁄ , (iii) 1 2⁄ < 𝑤! < 3 4⁄ , and (iv) 3 4⁄ < 𝑤! < 1. 

The more significant difference is that in the CSF team 𝑖 cannot choose 𝑥" = 0 
(𝑗 ≠ 𝑖), whereas in Equation (3) it can choose 𝑦! > 0 so that 𝐸𝑃𝐴!

" = 0 for 
given 𝑥" > 0. 

3.  Determination of an Allocation of Talent: Maximization of the 
Expected Win Percentage subject to the Budget Constraint 

In this section, we will identify an equilibrium allocation of the offensive and 
defensive talent between the two teams 𝐸 = >(𝑥! , 𝑦!), :𝑥" , 𝑦";?. To do so, we 
consider win-maximizing teams. Before the league’s regular season begins, each 
team independently determines the offensive talent level demanded 𝑥! > 0 and 
the defensive talent level demanded 𝑦! > 0 so as to maximize the expected 
season win percentage (Equation (3)) subject to the budget constraint, given the 
talent levels of the opponent :𝑥" , 𝑦";. 

Let 𝑐1 > 0 and 𝑐3 > 0 be the prices per unit of offensive and defensive talent, 
respectively. Then the budget constraints of the teams can be written as 

𝑐1𝑥! + 𝑐3𝑦! = 𝑀,                                                 (4) 

𝑐1𝑥" + 𝑐3𝑦" = 𝑀.                                                 (5) 

We assume that the fixed amount of money available 𝑀 > 0 is the same for 
each team. As we will see later, this assumption can be dropped in the 𝑛 ≥
3-team case. 

The best responses of win-maximizing teams to each other’s choices of talent 
are determined so that the budget constraint (Equations (4) and (5), 
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respectively) be satisfied and the EPA (Equation (2)) be zero: 

𝑥! = 𝑀 𝑐1⁄ − 2:𝑐3 𝑐1⁄ ;𝑥" and 𝑦! = 2𝑥" for 0 < 𝑥" < 𝑀 𝑐1⁄ ,              (6) 

𝑥" = 𝑀 𝑐1⁄ − 2:𝑐3 𝑐1⁄ ;𝑥! and 𝑦" = 2𝑥! for 0 < 𝑥! < 𝑀 𝑐1⁄ .              (7) 

Equations (6) and (7) imply that both win-maximizing teams buy as much 
offensive talent as possible under the budget constraint, and strengthen the 
defense in trying to win the game played against each other. Consequently, 
𝐸𝑃𝑆"! = 0  and 𝐸𝑃𝑆!

" = 0 , and thus 𝑤! = 𝑤" = 1 2⁄  (draw); that is, all 
undefeated teams won no games (a tragedy of undefeated teams). 

The common price ratio (the exchange rate of talent) in Equations (6) and (7) is 
determined so that the marginal rate of substitution (MRS) between the 
offensive and defensive talent for each team be equal to it: 
>(
>)
= 𝑀𝑅𝑆! = 𝑀𝑅𝑆", where 𝑀𝑅𝑆! ≡

89! 81!⁄
89! 83!⁄ . 

If this condition is satisfied at the talent allocation 𝐸 , then 𝐸  is Pareto 
efficient.11 Since 𝑤! = 𝑤" = 1 2⁄ , we obtain 𝑀𝑅𝑆! = 𝑀𝑅𝑆" = 2 and thus 𝑐1 =
2𝑐3 (see Figure 2). The result that 𝑀𝑅𝑆! = 2 follows from the result that a 
one-unit decrease in 𝑥! decreases Equation (1) by one and a two-unit increase 
in 𝑦! decreases Equation (2) by one. Thus, the Pareto efficiency condition 𝑐1 =
2𝑐3 implies that the cost of increasing the EPS equals the cost of decreasing the 
EPA. 

Here we identify the Pareto efficient equilibrium talent allocation between the 
teams. Substituting 𝑐1 = 2𝑐3 into Equation (6) or (7), we obtain 

𝑥! + 𝑥" =
@
>(

.                                                      (8) 

Substituting Equation (5) and 𝑐1 = 2𝑐3  into Equation (6), or substituting 
Equation (4) and 𝑐1 = 2𝑐3 into Equation (7), we obtain 

𝑦! + 𝑦" =
@
>)

.                                                      (9) 

By Equations (6) and (7), 𝑥! ⋛ 𝑥" ⇔ 𝑦! ⋚ 𝑦". Equations (8) and (9) together 
imply that in the two-team case the Pareto efficient equilibrium talent allocation 
𝐸 is not unique. This indeterminacy of equilibrium allocation will be explored 
further in the next section. As we will see later, in the 𝑛 ≥ 3-team case the 
Pareto efficient equilibrium talent allocation is unique. 

 

 
11 This condition is analogous to a tangency condition discussed in the context of the Edgeworth box. See, for 
example, Varian (1992, Section 17.6). 
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4.  Geometrical Examination of the Equilibrium Talent Allocation 

The results of the previous section can be examined geometrically by use of the 
box diagram depicted in Figure 3, which is analogous to the Edgeworth box.12 

Figure 3. The box diagram for the two-team case 

The sum of the offensive talent levels of the two teams (the length of the 
horizontal axis of the box) is given by Equation (8), and the sum of the defensive 
talent levels of the two teams (the height of the vertical axis of the box) is given 
by Equation (9). Geometrically, the talent levels of team 𝑖 , (𝑥! , 𝑦!) , are 
measured from the lower left-hand corner 𝑂! of the box, and the talent levels of 
team 𝑗, :𝑥" , 𝑦";, are measured from the upper right-hand corner 𝑂" of the box. 
In this way, every feasible allocation of the offensive and defensive talent 
between the two teams can be represented by a point in this box. The diagonal 
line with a slope of 2 is the budget lines, Equations (4) and (5), and the level sets 
𝑤! = 1 2⁄  and 𝑤" = 1 2⁄  of the teams (for the level sets, see Figure 2). The 
budget set of team 𝑖 (𝑗) consists of all the points below and to the left (above 
and to the right) of this line. The point 𝐸 is a unique intersection of the two 
level sets. 

As shown in the previous section, by Equations (8) and (9), when the 
equilibrium talent allocation 𝐸 = >(𝑥! , 𝑦!), :𝑥" , 𝑦";? is Pareto efficient, team 𝑖 

chooses the talent levels (𝑥! , 𝑦!) = :𝑀 𝑐1⁄ − 𝑥" , 𝑀 𝑐3⁄ − 𝑦"; for any given :𝑥" , 𝑦"; 
that satisfies Equation (5). On the lower right-hand side of the box, where 𝑥! ≥
𝑦" 2⁄  and 𝑦! ≤ 2𝑥", the following results are depicted: 

 
12 For the Edgeworth box, see Varian (1992, Chapter 17) and Mas-Colell, Whinston, & Green (1995, Section 15.B). 
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2 = >(
>)
= 3!

@ >(⁄ 21!
= 3!

1"
.                                             (10) 

The first equality follows from the Pareto efficiency condition, the second 
equality follows from Equation (4), and the last equality follows from Equation 
(8). By Equation (10), team 𝑖 chooses a point (𝑥! , 𝑦!) on the budget line so that 
𝑦! = 2𝑥" for given :𝑥" , 𝑦"; that lies on the budget line, as stated in Equation (6). 
The win percentage of team 𝑖 attains its maximum value 1 2⁄  on the budget 
line. 

Similarly, by Equations (8) and (9), team 𝑗 chooses the talent levels :𝑥" , 𝑦"; =
:𝑀 𝑐1⁄ − 𝑥! , 𝑀 𝑐3⁄ − 𝑦!; for any given (𝑥! , 𝑦!) that satisfies Equation (4). On the 
upper left-hand side of the box, where 𝑥" ≥ 𝑦! 2⁄  and 𝑦" ≤ 2𝑥!, the following 
results are depicted: 

2 = >(
>)
= 3"

@ >(⁄ 21"
= 3"

1!
.                                            (11) 

The first equality follows from the Pareto efficiency condition, the second 
equality follows from Equation (5), and the last equality follows from Equation 
(8). By Equation (11), team 𝑗 chooses a point :𝑥" , 𝑦"; on the budget line so that 
𝑦" = 2𝑥! for given (𝑥! , 𝑦!) that lies on the budget line, as stated in Equation (7). 
The win percentage of team 𝑗 attains its maximum value 1 2⁄  on the budget 
line. 

By Equations (4), (5), (10), and (11), the Pareto efficient equilibrium talent 
allocation 𝐸 is determined. It can be verified that 𝑥! ⋛ 𝑥" ⇔ 𝑦! ⋚ 𝑦". As stated 
in the previous section, a solution is not unique and any allocation on the 
budget lines can be a Nash equilibrium. 

5.  A General n-Team League 

Asymmetric Contests 

In the previous three sections, we have studied the two-team league. In this 
section, we will study a general n-team league. To do so, we consider an n-team 
league where each team consists of offensive and defensive units, and plays the 
game 𝐺{!,"} ≡ 〈*𝐺!"., *𝐺"!.〉 (𝑖 ≠ 𝑗) against each of the 𝑛 − 1 other teams during 
the league’s regular season. 

By an argument exactly analogous to that used in the two-team case in Section 2, 
the expected total points scored (EPS) and the expected total points allowed 
(EPA) of team 𝑖 (𝑖 = 1,⋯ , 𝑛) in the regular-season games are given by 

𝐸𝑃𝑆! ≡ ∑ 𝐸𝑃𝑆!
"

"A! = B2&
'
>2𝑥! −

&
B2&

∑ 𝑦""A! ?,                         (12) 

𝐸𝑃𝐴! ≡ ∑ 𝐸𝑃𝐴!
"

"A! = B2&
'
> '
B2&

∑ 𝑥""A! − 𝑦!?,                          (13) 
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where ∑𝐸𝑃𝑆! = ∑𝐸𝑃𝐴!. Equations (12) and (13) imply that a one-unit increase 
in 𝑥! increases the EPS by 𝑛 − 1 and a one-unit increase in 𝑦! decreases the 
EPA by (𝑛 − 1) 2⁄ . The expected season win percentage of team 𝑖  is then 
calculated based on Equations (12) and (13) by use of the Pythagorean 
expectation: 

𝑤! =
C'1!2

%
*$%

∑ 3""+! E
#

C'1!2
%

*$%
∑ 3""+! E

#
5C &

*$%
∑ 1""+! 23!E

#,                                 (14) 

where γ > 0. 

 

Here we identify the equilibrium offensive and defensive talent levels of the 
teams. Assume that the fixed amount of money available 𝑀! > 0 is different for 
each team. Then the budget constraint of each team can be written as 

𝑐1𝑥! + 𝑐3𝑦! = 𝑀! for all 	𝑖.                                         (15) 

By an argument exactly analogous to that used in the two-team case in Section 3, 
by Equation (14), the best response of each win-maximizing team to others’ 
choices of talent is determined as 

𝑦! =
'

B2&
∑ 𝑥""A!  for all 	𝑖.                                           (16) 

Substituting Equation (16) into Equation (15), we have 

𝑐1𝑥! +
'>)
B2&

∑ 𝑥""A! = 𝑀!.                                            (17) 

Summing Equation (17) over 𝑖 = 1,⋯ , 𝑛 to get 

∑ 𝑥""A! = @!5∑ @""+!

>(5'>)
− 𝑥!.                                            (18) 

Substituting Equation (18) back into Equation (17) and then solving for 𝑥!, we 
obtain the equilibrium offensive talent level of each team: 

𝑥! = 𝛼&𝑀! − 𝛼'∑ 𝑀""A!  for all 𝑖,                                     (19) 

where 𝛼& =
(B2&)>(5'(B2')>)

F(B2&)>(2'>)G0>(5'>)4
> 0 and 𝛼' =

'>)
F(B2&)>(2'>)G0>(5'>)4

> 0. 

Substituting Equation (19) back into Equation (18) and then substituting the 
result into Equation (16), we obtain the equilibrium defensive talent level of 
each team: 

𝑦! = −𝛽&𝑀! + 𝛽'∑ 𝑀""A!  for all 𝑖,                                    (20) 

where 𝛽& =
(>)

F(B2&)>(2'>)G0>(5'>)4
> 0 and 𝛽' =

'>(
F(B2&)>(2'>)G0>(5'>)4

> 0. 
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The equilibrium talent levels (Equations (19) and (20)) are positive if 
BH&
H%5H&

∙ &
B
∑𝑀" < 𝑀! <

BI&
I%5I&

∙ &
B
∑𝑀", 

where 𝑛𝛼' (𝛼& + 𝛼')⁄ < 1 and 1 < 𝑛𝛽' (𝛽& + 𝛽')⁄  if (𝑛 − 1)𝑐1 − 2𝑐3 > 0. 

In the remainder of this subsection, we identify the effects of the gap in team 
payrolls. First, we examine the effects on the talent levels of the teams and show 
that the teams in the league are divided into the rich offensive-minded teams 
and the poor defensive-minded teams. It can be derived from Equations (19) 
and (20) that 𝜕𝑥! 𝜕𝑀!⁄ > 0, 𝜕𝑦" 𝜕𝑀!⁄ > 0, 𝜕𝑥" 𝜕𝑀!⁄ < 0, and 𝜕𝑦! 𝜕𝑀!⁄ < 0 for 
𝑖 ≠ 𝑗. These results in turn imply that when the amount of money available to 
team 𝑖 increases, it increases its demand for offensive talent, and the other 
teams respond to it by increasing their demand for defensive talent and 
reducing their demand for offensive talent under the budget constraints, and 
thus it reduces its demand for defensive talent. Therefore, we obtain 𝑥! > 𝑥" 
and 𝑦! < 𝑦" for 𝑀! > 𝑀". It can also be verified from Equations (19) and (20) 
that 𝑥! ⋛ ∑𝑥" 𝑛⁄  and 𝑦! ⋚ ∑𝑦" 𝑛⁄  ⇔ 𝑀! ⋛ ∑𝑀" 𝑛⁄ . 

Next, we move to the effects on the expected season win percentages of the 
teams and show that the teams in the league are divided into the rich winners 
and the poor losers. Substituting Equations (16) and (19) into Equation (12) 
gives us 

𝐸𝑃𝑆! =
B(B2')
B2&

b𝑥! −
&
B
∑𝑥"c =

B(B2')
F(B2&)>(2'>)G

b𝑀! −
&
B
∑𝑀"c. 

Since 𝑛 ≥ 3, we obtain the relation: 

𝐸𝑃𝑆! ⋛ 0  ⇔  𝑀! ⋛
&
B
∑𝑀". 

On the other hand, substituting Equation (16) into Equation (13), we obtain 
𝐸𝑃𝐴! = 0 for all 𝑖. (Unlike the two-team case, 𝐸𝑃𝐴! = 0 for all 𝑖  does not 
necessarily imply that 𝐸𝑃𝑆! = 0  for all 𝑖  since 𝐸𝑃𝑆! ≡ ∑ 𝐸𝑃𝑆!

"
"A!  whereas 

𝐸𝑃𝐴! = ∑ 𝐸𝑃𝑆"!"A! .) We now interpret 𝐸𝑃𝑆!
" < 0 (i.e., 2𝑥! < 𝑦") as points scored 

by the defense of team 𝑗 and include −𝐸𝑃𝑆!
" > 0 in the calculation of 𝐸𝑃𝐴!′.13 

Similarly, we interpret 𝐸𝑃𝐴!
" < 0 (i.e., 2𝑥" < 𝑦!) as points scored by the defense 

of team 𝑖 and include −𝐸𝑃𝐴!
" > 0 in the calculation of 𝐸𝑃𝑆!′. Then, if the 

payroll of team 𝑖 is greater than the mean levels of all teams, 𝑀! > ∑𝑀" 𝑛⁄ , 
then we obtain 𝐸𝑃𝑆!′ > 𝐸𝑃𝐴!′ > 0, and thus 1 2⁄ < 𝑤! < 1. In contrast, if 𝑀! <
∑𝑀" 𝑛⁄ , then we obtain 0 < 𝐸𝑃𝑆!′ < 𝐸𝑃𝐴!′ , and thus 0 < 𝑤! < 1 2⁄ . (The 

 
13 In American football, the defensive unit can score points, e.g., a fumble return touchdown, an interception return 
touchdown, and a safety. In soccer, we can think of goals scored from counter-attacks. In volleyball, we can think of 
block points. 
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definitions of the EPS and the EPA are modified as stated above. See Example 
below.) 

Example. 

We consider a 3-team case where 𝑀& = 1, 𝑀' = 2, and 𝑀- = 4. In this case, the 
offensive talent levels are 𝑥& < 𝑥' < ∑𝑥" 3⁄ < 𝑥- and the defensive talent levels 
are 𝑦& > 𝑦' > ∑𝑦" 3⁄ > 𝑦-. Substituting Equations (16) and (19) into Equation 
(1) gives us 

𝐸𝑃𝑆!
" = 𝑥! −

&
B2&

∑ 𝑥JJA" = B2&
F(B2&)>(2'>)G

b𝑀! −
&

B2&
∑ 𝑀JJA" c, 

where the sign of the term on the right can be determined by 

𝑀! −
&

B2&
∑ 𝑀JJA" ⋛ &

B2&
b𝑀" −

&
B
∑𝑀Jc  ⇔  𝑀! ⋛

&
B
∑𝑀J. 

Since (∑ 𝑀JJA- ) 2⁄ < 𝑀' < (∑ 𝑀JJA& ) 2⁄ , we obtain 𝐸𝑃𝑆'& < 0  and 𝐸𝑃𝑆'- > 0 . 
Similarly, since 𝑀& < (∑ 𝑀JJA' ) 2⁄ < 𝑀- , we obtain 𝐸𝑃𝐴'& = 𝐸𝑃𝑆&' < 0  and 
𝐸𝑃𝐴'- = 𝐸𝑃𝑆-' > 0. Since 𝑀' < ∑𝑀" 3⁄ , we obtain the relations: 

𝐸𝑃𝑆' = 𝐸𝑃𝑆'& + 𝐸𝑃𝑆'- < 0  ⇔  𝐸𝑃𝑆'- < −𝐸𝑃𝑆'&, 

𝐸𝑃𝐴' = 𝐸𝑃𝐴'& + 𝐸𝑃𝐴'- = 0  ⇔  −𝐸𝑃𝐴'& = 𝐸𝑃𝐴'-. 

Thus, 𝐸𝑃𝑆' < 𝐸𝑃𝐴'  ⇔ 𝐸𝑃𝑆'′ < 𝐸𝑃𝐴'′ , where 𝐸𝑃𝑆'′ = 𝐸𝑃𝑆'- − 𝐸𝑃𝐴'& > 0  and 
𝐸𝑃𝐴'′ = 𝐸𝑃𝐴'- − 𝐸𝑃𝑆'& > 0. Therefore, the expected win percentage of team 2 is 
0 < 𝑤' < 1 2⁄ . The other results can be verified in similar ways.              □ 

Lastly, we check the Pareto efficiency of the unique equilibrium talent allocation 
𝐸 = ((𝑥! , 𝑦!)!K&B ) given by Equations (19) and (20), and show that 𝐸 is Pareto 
inefficient. By Equations (12), (13), and (14), the MRS for team 𝑖 is given by 
𝑀𝑅𝑆! = 2(𝐸𝑃𝐴!′ 𝐸𝑃𝑆!′⁄ ). Thus, we obtain 𝑀𝑅𝑆! ⋛ 2 ⇔ 𝑤! ⋚ 1 2⁄ . Therefore, the 
MRS is not equalized across the teams at 𝐸 , and thus there remain the 
possibilities of Pareto-improving player trades in the player market. Another 
characterization of Pareto efficiency is that any talent allocation that satisfies 
the adding-up constraint is Pareto efficient. Unlike the two-team case, Equation 
(14) does not necessarily satisfy the adding-up constraint ∑𝑤! = 𝑛 2⁄ . The only 
Pareto efficient talent allocation that satisfies both the equalization of the MRS 
and the adding-up constraint leads to 𝑤! = 1 2⁄  for all 𝑖. 

Symmetric Contests 

The foregoing is contrasted with the case of symmetric contests. We now 
assume that the fixed amount of money available is the same for each team, 
𝑀! = 	𝑀 for all 𝑖. This assumption is satisfied when a salary cap is adopted.14 

 
14 For the economic analysis of a salary cap, see Fort & Quirk (1995), Vrooman (1995), Késenne (2000b, 2007), and 
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Under this assumption, the unique equilibrium talent levels (Equations (19) and 
(20)) of each team become 

 𝑥! =
@

>(5'>)
 and 𝑦! =

'@
>(5'>)

 for all 𝑖.                             (21) 

Substituting Equation (21) into Equation (14), we obtain 𝑤! = 1 2⁄  for all 𝑖 (a 
tragedy of undefeated teams). Thus, the Pareto efficiency condition is given by 
>(
>)
= 𝑀𝑅𝑆! = 𝑀𝑅𝑆" = 2 for all 𝑖 ≠ 𝑗. 

(Note that unlike the two-team case (𝑛 − 1)𝑐1 − 2𝑐3 ≠ 0  for 𝑛 ≥ 3  in the 
denominators and numerators of Equations (19) and (20).) Substituting 𝑐1 =
2𝑐3 into Equation (21), we can say that the budget of each team is equally 
allocated to the offensive and defensive talent: 

𝑐1𝑥! = 𝑐3𝑦! =
@
'

 for all 𝑖.                                        (22) 

In the remainder of this subsection, we provide an interpretation of the n-team 
symmetric contests. Since Equation (21) is also a symmetric solution to 
Equations (15), (16), and 

𝑐1
&

B2&
∑ 𝑥""A! + 𝑐3

&
B2&

∑ 𝑦""A! = 𝑀,                                 (23) 

&
B2&

∑ 𝑦""A! = 2𝑥!,                                                (24) 

the strategic interactions between team 𝑖 and all other teams can be examined  

Figure 4. The box diagram for the n-team case 

geometrically by use of the box diagram depicted in Figure 4, as in the two-team 
 

Dietl et al. (2011). 
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case in Section 4. Equations (23) and (24) can be interpreted as the budget 
constraint and the best response of a fictitious “shadow” team, with the talent 
levels equal to the mean levels of all other teams.15 So the strategic interaction 
environment faced by each team is analogous to the yardstick competition à la 
Shleifer (1985).16 

Equation (24) can be obtained if a symmetric solution ∑ 𝑥""A! (𝑛 − 1)⁄ = 𝑥! is 
assumed. Substituting this symmetry assumption into Equation (16), we obtain 
𝑦! = 2𝑥!. Summing Equation (16) over 𝑖 = 1,⋯ , 𝑛, and then substituting 𝑦! =
2𝑥! and the symmetry assumption into the result, we obtain Equation (24): 
&

B2&
∑ 𝑦""A! = '

B2&
∑ 𝑥""A! = 2𝑥!, 

which also implies that ∑ 𝑦""A! (𝑛 − 1)⁄ = 𝑦! . These results can be shown 
graphically in Figure 4 (see the lower-right hand side ⇒ the lower-left hand side 
⇒ the upper-right hand side ⇒ the upper-left hand side). By Equations (15) and 
(23) and the symmetry assumption, the Pareto efficient equilibrium talent 
allocation 𝐸  is uniquely determined. It can be readily verified from the 
symmetry assumption that Equation (22) holds. 

6. Concluding Remarks 

In this article, we have incorporated games played on the field into the 
economic analysis of sporting contests. By doing so, we can systematically study 
the following three decision-making problems of each team: in chronological 
order, (i) each team (mainly the owner) determines the team payroll; (ii) each 
team (mainly the general manager) determines the offensive and defensive 
talent levels so as to maximize the expected season win percentage 
(Pythagorean expectation) subject to the budget constraint, given the talent 
levels of the opponents; and (iii) each team (mainly the manager) chooses the 
types of play for regular-season games so as to maximize the expected points 
scored (EPS) and minimize the expected points allowed (EPA), given the 
opponents’ choices of play. 

We have solved these problems backward and obtained the following results: for 
(iii) each team randomizes over alternative types of play in each game; for (ii) 
the talent levels of each team depend on the team payroll: the teams in the 
league are divided into the rich offensive-minded teams and the poor 
defensive-minded teams; and for (i) each team’s performance on the field 
depends on the team payroll: if the payroll of a team is greater (smaller) than 
the mean levels of all teams, then the expected season win percentage of the 

 
15 The term “shadow” is taken from Shleifer (1985). In the yardstick competition, the shadow firm serves as the 
benchmark for a firm. 
16 Madden (2011, p.409) suggested that strategic interactions in sporting contests are analogous to the Cournot 
competition (with expenditures on talent replacing quantities of talent). 
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team is higher (lower) than 50%. Moreover, if the payroll of each team is the 
same, then the unique equilibrium talent allocation is Pareto efficient. 
Otherwise, it is Pareto inefficient. In the latter case, there remain the 
possibilities of Pareto-improving player trades in the player market. 

For the result (ii), we can point out the following facts: in the 2019 Major 
League Baseball (MLB) season, Runs Created of eight of fourteen (ten of 
sixteen) teams that spent more (less) money on player salaries than the mean 
levels of all thirty teams were higher (lower) than the mean levels of all teams 
(the correlation coefficient between Runs Created and team payroll is 0.493).17 
On the other hand, Defensive Runs Saved of eleven of sixteen (six of fourteen) 
teams that spent less (more) money on player salaries than the mean levels of all 
thirty teams were non-negative (negative) (the correlation coefficient is 0.123).18 

For the result (i), we can point out the following facts: First, in the 2019 MLB 
season, nine of fourteen (sixteen) teams that spent more (less) money on player 
salaries than the mean levels of all thirty teams won (lost) more than 50% of 
regular-season games (the correlation coefficient between team payroll and win 
percentages is 0.404).19 Second, in the English Premier League (EPL) during 
the 2016-17 season, six teams (Manchester City, Manchester United, Chelsea, 
Arsenal, Liverpool, and Tottenham Hotspur) spent more money on player 
salaries than the mean levels of all twenty teams, and only seven teams (the 
above mentioned six teams in the top six and Everton in the seventh place) won 
more than 50% of regular-season games (the correlation coefficient is 0.864).20 

According to the result (i), the strategic determination of team payroll is “a race 
to the top”, so a win maximizer will spend everything he can lay his hands on. 
An appropriate way of determining team payroll (e.g., profit maximization, a 
breakeven constraint, or salary restrictions (caps and floors), etc.) is a research 
subject for future studies. The effects of the upper level competition (e.g., the 
UEFA Champions League and the UEFA Europa League) on team payroll and 
those of promotion/relegation systems are also research subjects for future 
studies. 

 

 
17 The regression of Runs Created 𝑅𝐶! on team payroll 𝑀! (million $) is given by 𝑅𝐶! = 673.83 + 1.022𝑀! and 
the t-value of the estimated slope is 2.995. Thus, the null hypothesis is rejected at the 1% level of significance. For 
Runs Created of the MBL teams in the 2019 season, see Baseball Reference website. 
18 In the regression of Defensive Runs Saved on team payroll, the t-value of the estimated slope is 0.654, and thus the 
null hypothesis cannot be rejected. For Defensive Runs Saved of the MLB teams in the 2019 season, see Fielding 
Bible website. 
19 The regression of win percentage 𝑤! (%) on team payroll 𝑀! (million $) is given by 𝑤! = 38.72 + 0.085𝑀! 
and the t-value of the estimated slope is 2.335. Thus, the null hypothesis is rejected at the 5% level of significance. 
For the payroll data of the MBL teams in the 2019 season, see USA TODAY website. 
20 The regression of win percentage 𝑤! (%) on team payroll 𝑀! (million ￡) is given by 𝑤! = 28.991 + 0.217𝑀! 
and the t-value of the estimated slope is 7.273. Thus, the null hypothesis is rejected at the 1% level of significance. 
For the payroll data of the EPL teams during the 2016-17 season, see TOTAL SPORTEK (2018). 
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MLB2019 Team Payroll RC DRS WP  
1 Cubs 211.546714 848 -14 51.9 ROW 
2 Yankees 205.442088 944 -5 63.6 ROW 
3 Nationals* 204.449127 907 -3 57.4 ROW 
4 Red Sox 204.335019 941 -28 51.9 ROW 
5 Giants 199.729652 677 47 47.5  
6 Angels 177.328583 794 9 44.4  
7 Dodgers 170.903333 930 126 65.4  
8 Astros 165.653 1004 96 66  
9 Cardinals 165.253599 764 91 56.2  

10 Mariners 152.807076 766 -88 42  
11 Rockies 150.805164 872 9 43.8  
12 Mets 149.00223 840 -86 53.1 ROW 
13 Phillies 144.616127 799 51 50  
14 Reds 133.580714 747 58 46.3  
15 Brewers 127.850342 855 40 54.9  
16 Indians 122.875033 787 82 57.4  
17 Braves 117.855753 898 41 59.9  
18 Twins 114.901933 967 3 62.3  
19 Dbacks 108.04065 831 112 52.5  
20 Rangers 106.969999 799 -52 48.1  
21 Tigers 104.5819 644 -84 29.2  
22 Royals 102.570791 705 5 36.2 PDL 
23 Athletics 102.545 830 36 59.9  
24 White Sox 90.652 730 -56 44.7  
25 Orioles 80.012045 737 -95 33.3  
26 Pirates 76.082999 782 -46 42.6  
27 Padres 75.795766 697 17 43.2 PDL 
28 Blue Jays 71.228671 733 0 41.4 PDL 
29 Marlins 70.61002 625 25 35.2 PDL 
30 Rayes 53.500799 810 53 59.3  

 Average 132.0508709 808.76667  49.986667  
Team Payroll, Runs Created, Defensive Runs Saved, and Win Percentage in the 2019 MLB 
Season. (*: World Series Champion, ROW: Rich Offensive-minded Winner, PDL: Poor 
Defensive-minded Loser) 
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